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XIIL. On @ New Auxiliary Equation in the Theory of Equations of the Fifth Order.
By Arraur Cayiey, FEsq., F.R.S.

Received February 20,—Read March 7, 1861.

CoNSIDERING the equation of the fifth order, or quintic equation,
(3w, 1) =(v—a,)(0—2,)(v—23) (v— &) (v—2,)=0,

and putting as usual

‘ fw=x1+wx2+w2x3+w3m4-|-w“x5,

where « is an imaginary fifth root of unity, then, according to LAGRANGE’S general

theory for the solution of equations, f» is the root of an equation of the order 24,

called the Resolvent Equation, but the solution whereof depends ultimately on an

equation of the sixth order, viz.

. (fa)s (fa')> (fo') (fa')

are the roots of an equation of the fourth order, each coefficient whereof' is determined

by an equation of the sixth order; and moreover the other coefficients can be all of them

rationally expressed in terms of any one coefficient assumed to be known; the solution

thus depends on asingle equation of the sixth order. In particular thelast coefficient, or

(forfo fofoY,

is determined by an equation of the sixth order; and not only so, but its fifth root, or

fw Jo? . fo .fw“,
(which is a rational function of the roots, and is the function called by Mr. CockLE the
Resolvent Product), is also determined by an equation of the sixth order: this equation
may be called the Resolvent-Product Equation. But the recent researches of Mr. CockLe
and Mr. HARLEY * show that the solution of an equation of the fifth order may be made
to depend on an equation of the sixth order, originating indeed in, and closely connected
with, the resolvent-product equation, but of a far more simple form ; this is the auxiliary
equation referred to in the title of the present memoir. The connexion of the two
equations, and the considerations which led to the new one, will be pointed out in the
sequel; but I will here state synthetically the construction of the auxiliary equation.
Representing for shortness the roots (2,, @, &5 &, #;) of the given quintic equation by
1, 2, 3, 4, 5, and putting moreover
12345=12+423+ 34445451, &c.
* CooKLE, “ Researches in the Higher Algebra,” Manchester Memoirs, t. xv. pp. 181-142 (1858).
Harrzy, “On the Method of Symmetric Products, and its Application to the Finite Algebraic Solution

of Equations,” Manchester Memoirs, t. xv. pp. 172-219 (1859).
HarLry, “ On the Theory of Quintics,” Quart. Math. Journ. &. iii. pp. 343-859 (1859).
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264 MR. A. CAYLEY ON A NEW AUXILIARY EQUATION IN

(where on the right-hand side 12, 23, &ec. stand for #,4,, @,%;, &c.), then the auxiliary
equation, say
(xX¢o, 1)°’=0,

0, =12346—24185, ¢,=21435—13245,
0,=134256—32145, ¢,=381245—14325,
0, =14235—43125, %:41325—12435,
and, it follows therefrom, is of the form
(1,0,C, 0, E, F, GY¢, 1)°=0,

where C, E, G are rational and integral functions of the coefficients of the given equa-

tion, being in fact seminvariants, and F is a mere numerical multiple of the square root
of the discriminant.

has for its roots

The roots of the given quintic equation are each of them rational functions of the roots
of the auxiliary equation, so that the theory of the solution of an equation of the fifth
order appears to be now carried to its extreme limit. We have in fact

0.0+ 0.0+ 0:0s=(* Y&, 1)%,
0.0+ 0s0.+0,00=(* 1> 1)1,
0,054 003+ P05 =(* 15, 1),
0,05+ Pa @6+ 0o =(* Y@, 1)%
0.0+ PuPs - 0uPs= (%Y s, 1),

where (xYa,, 1), &c. are the values, corresponding to the roots ,, &c. of the given
equation, of a given quartic function. And combining these equations respectively with
the quintic equations satisfied by the roots x,, &c. respectively, it follows that, con-
versely, the roots ,, ,, &c. are rational functions of the combinations 0,05+ 0.0+ 005,
0.0, 00+ 0:06, &c. respectively, of the roots of the auxiliary equation.

It is proper to notice that, combining together in every possible manner the six roots of
the auxiliary equation, there are in all fifteen combinations of the form ¢,0,- 2,0, @,
But the combinations occurring in the above-mentioned equations are a completely
determinate set of five combinations: the equation of the order 15, whereon depend
the combinations ¢,¢,~+@.¢,+ .0, is not rationally decomposable into three quintic
equations, but only into a quintic equation having for its roots the above-mentioned five
combinations, and into an equation of the tenth order, having for its roots the other
ten combinations, and being an irreducible equation. Suppose that the auxiliary equa-
tion and its roots are known; the method of ascertaining what combinations of roots
correspond to the roots of the quintic equation would be to find the rational quintic
factor of the equation of the fifth order, and observe what combinations of the roots of
the auxiliary equation are also roots of this quintic factor. The direct calculation of
the auxiliary equation by the method of symmetric functions would, I imagine, be very
laborious. But the coefficients are seminvariants, and the process explained in my
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memoir on the Equation of Differences was therefore applicable, and by means of it, the
equation, it will be seen, is readily obtained. The auxiliary equation gives rise to a
corresponding covariant equation, which is given at the conclusion of the memoir.

1. 1 will commence by referring to some of the results obtained by Mr. CockLE and -
Mr. HARLEY.

In the paper “Researches on the Higher Algebra,” Mr. CockLE, dealing with the
quintic equation . -
v —5Qu4+E=0,
obtains for the Resolvent Product d(=fufw’fu’fw') the equation

O+ 2QE5 0"+ 2Q57¢° 4+ QE5 ¢ — (58Q° — E*)Ea4-54Q° =0 ;
and he remarks that this equation may be written
(C+5°QEI4-5Q ) =56"(108QE—~E*)s,

so that o/ —4 is determined by an equation of the sixth order, involving the quadratic
radical o/ F(E*—108Q°), which is in fact the square root of the discriminant of the quintic
equation.

2., Mr. HARLEY, in his paper “On the Symmetric Product, &c.,’
functions

2

makes use of the

7 =22+ 22+ w2+ 20+ 20,(=12345),
¢ =u,2, 250+ 22+ 2.0, 220, (=24135),

and he obtains for the form v*—5Q*+E=0, the relation d=>5++', which, since here
747 =0, gives §=—5+°

Hence 7(:\/ —% 0) is the root of an equation of the sixth order involving the radical

~/E(FP—108Q%), and which is in fact (t:i—;:% 17), the equation

£4-5QEL 4/ BB —108Q° )t —5Q* =0,
given in Mr. HARLEY'S paper “On the Theory of Quintics.”
8. And in the same paper there is given a system of equations
Lttt =, (3°Q—2a3), &ec.,
connecting the five roots of the given quintic equation with the combinations
t b+ttt &ec.
of the roots of the equation in ¢

4. I quote also, with a slight change of notation, the following results from the paper
“On the Symmetric Product, &ec.,” viz. considering the quintic equation under the form

(@,b,¢,¢,d,efYv,1)=0,

Sfo for=20"4v(w +o')+7(’+ o)
Jofo’ =30+ (0 + o)+ 7 (0 +at),

MDCCCLXI. 20

we have
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where
o 1
Sot=al4ai+ ol 4l at= g (P — 2a0),
and thence, observing also that +4¢/ =—Z7
' =a'fufe’fo’fo' ) =5’ —5ab’c - b* +batr’,
or as this equation may also be written,
4a'0=(bac—20*) = b5a'(v—7');

and hence the Resolvent Product §(=fwfa’fs’fs') being determined by an equation of
the sixth order, this is also the case with the function (7—+')%
5.. But the twelve functions -(r—4+') can be divided into two sets of six functions each,

so that each set is determined by an equation of the sixth order involving a single qua-
dratic radical. This was in fact suggested to me by Mr. HARLEY’S equation in #; for in
the case considered ¢4t was =0, or 2¢=¢-—¢, and the equation in # was presumably the
particular form of the equation for 1(¢—#') in the general case. But it will presently
appear in what manner the conclusion should have been arrived at & priori.

6. The preceding remarks show the connexion between the function P(=7—7) to
which belongs the new auxiliary equation, and the Resolvent Product §(=fafe’fo’fa").
The relation was given for the denumerate form of the quintic; but taking, instead, the
standard form (a, b, ¢, d, ¢, f Y v, 1)°=0, it becomes

4a*0=2500(ac—0* > —ba'e®.
7. The foregoing equation shows that ¢ is a seminvariantive function of the roots. In
fact
Jw, =0, — &+ w(y— ;) + (0 —5) +0* (2, —2,),
is seminvariantive, and f%% fo°, fo*, being in like manner seminvariantive, the product
I =fufw’fu’fe') is also seminvariantive; ac—0® and « are seminvariants, and therefore ¢
is a seminvariantive function.

8. But it is easy to show this directly. For representing, as before, the roots by
1,2, 8, 4,5, we have

(1—=5)(2—8)+(2—5)(3—9)+(3—5)(4—5)=12423+34—5(1 +2242344)435°,

(2—=5)(4—5)+(4—5)(1—56)+(1—5)(8—5)=24-+41+13—5(2424+2143)+35%;
and the difference of the right-hand sides is

124-23+4-34~—56(2+3)
—24—41-1345(4-1),
which is =123456—24135. So that ¢,
= (1=5)(2—5) +(2=5)(3—5) +(3—5)(4—5) —[(2—5)(4—5)+(4—5)(1=5) + (1= 5)(3—5)].
is a function of the differences of the roots, that is, it is a seminvariantive function.
9. To account for the division of the twelve values of 4-(#—7') into two sets as above,



THE THEORY OF EQUATIONS OF THE FIFTH ORDER. 267

and to explain the formation of a sct, consider the symbols 1, 2, 8, 4, 5 as belonging to
five points. We may with these five points form in all (1.1.2.3.4=)12 pentagons, and
the symbol 12345 of any pentagon may of course be read backwards or forwards from
any point (12345=23451=&c.=15432=~&ec.) without alteration of its meaning. Now
attaching to each arrangement of the five numbers a sign, 4+ or —, according to the
ordinary rule of signs, 12345 being as usual positive, the arrangements 12345, 28451,
&e. .. 15432, &c.,kwhich belong to the same pentagon, have all of them the same sign ;
and we may consequently connect with each pentagon the sign 4 or — ; there are, in
fact, six pentagons with the sign 4 and six with the sign —; and to each positive
pentagon there corresponds a negative pentagon, which is derived from it by stellation,
viz. to the positive pentagon 12345 there corresponds the negative one 24135, and so
for the other positive 'pentagons. The above-mentioned system of equations

0,=12845 24135, 0,=21455—13245,
£, =13425—32145, ,=31245—14325,
0,=14235— 43125, @,=41325—12435,

in fact exhibits the six positive pentagons, each accompanied by its stellated negative
pentagon, and the formation of the system of equations is thus completely explained;
the order of arrangement of the pairs énfer se (or, what comes to the same thing, the
order of arrangement of the suffixes of the ¢’s) is wholly immaterial.

10. The six pairs of pentagons, or, what is the same thing, the ¢’s, correspond to each
other in pairs in a fivefold manner, guoad the numbers 1, 2, 3, 4, 5 respectively; thus,
quoad b5, the pairs are ¢, and @,, ¢, and @;, ¢, and @, or say 1 and 4, 2 and 5, 8 and 6.
The relation is best seen by means of the positive pentagons; thus, quoad 5, in the
pentagons 12345 and 21435, the points adjacent to & in the one of them are the points
2, 3, and in the other of them the complementary points 1, 4; and so in the other cases.
The fivefold correspondence is shown by the symbolical equations

1=16, 24, 35,
9=12, 34, 56,
3=15, 23, 46,
4=13, 26, 85,
5=14, 25, 36,

which, in fact, indicate the combinations of the ¢’s which correspond to the several roots
of the quintic. :

11. Tt is proper to notice that the right-hand sides of the last-mentioned equations
contain all the duads formed with the six numbers 1, 2, 3, 4, 5, 6, each duad once, and
once only. There are in all six such synthemes of duads, viz.

202
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12.34.56 | 12.85.46 | 12.36.45
13.25.46 | 13.24.56 | 13.25.46
14.26.35 | 14.25.36 | 14.23.56
15.24.36 | 15.26.34 | 15.26.34
16.23.45 | 16.23.45 | 16.24.35

12.34.56 | 12.35.46 | 12.36.45
*2.26.45 | 13.26.45 | 13.24.56
-4.25.36 | 14.23.56 | 14.26.35
15.23.46 | 15.24.36 | 15.23.46
16.24.35 | 16.25.34 | 16.25.34

which is ** .act the theorem whereon depends the existence, for six letters, of a 6-valued
function not symmetrical in respect of five letters. There is not any peculiarity in the
syntheme of duads which above presented itself; the occurrence of this particular syn-
theme, instead of any other, arises merely from the arbitrary selection of the suffixes of
the ¢’s.

12. It is hardly necessary to remark that if the pentagon 12345 had been assumed
negative instead of positive, the only difference would be that the ¢’s would have their
signs reversed.

13. I proceed now to the calculation of the Auxiliary Equation. As the working is
rather easier for that form, I shall in the first instance take for the given quintic the
denumerate form

(a, b, ¢, d, e, f{v, 1)=0.
Representing, as before, the roots a,, ,, &, ,, «; of this equation by 1, 2, 3, 4, 5, and
writing

123456=124234-84 445451, &c.
(where on the right-hand side 12, 28, &c. stand for «,2,, #,%,, &c.), we have to find the

equation
(*I@, 1)6..—..0,
the roots whereof are
0,=123456—24185, ¢,=21435—13245,
0, =13425—32145, ¢,—=31245—14325,
0,=14235—43125, ¢,=41325—12435.

As already remarked, the coeflicients are seminvariants, and if the equation is in the
first instance calculated for the particular case f=0, the terms in f can be separately
determined. But putting =0, one of the roots, say 5, becomes =0, and the remain-
ing roots 1, 2, 3, 4 are the roots of the quartic equation («, 4, ¢, d, v, 1)*=0.
14. Writing for shortness
1234=124-234-34, &c.,
and putting also
A=12434,

B=13442,
C=14-423,
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then we have
’ 0, =1284—2413=124+2834-384—24—41—183=A—B +423—14,
$,=1342—3214=13454+442—-32—21—-14=B—C+34—12,
0,=1423—4312=144-424283—43—381—-12=C—A 44213,

0,=2143—1324=21+14+43—-13—32—24=A—B —23+414,
0;=3124—-1423=31412424—-14—42-283=B—C —34 412,
0s—=4132—1243=41413432—-12—24—-43=C—A—42413.
15. We have then
(p—0)(o—0.)=(p—A+B)—(14—23)
=(p—A+4B)—C"4-4.1234,
where 1234 denotes the product of the four roots; the functions A, B, C, and the pro-
dnct 1234, are each of the degree zero in the coefficients (a, b, ¢, d, €); and if we put

b=—c¢,

c=—4ae +0d,

d= 4dace—ad®—b,

then we 1n fact have

a2A =-—b,
@?2AB = ¢,
@*ABC =—d,
a.1234= e

But on the understanding that ¢ is ultimately to be changed into ag, it is allowable,
and it will be convenient to write

3A =-—b,
- 2AB= ¢,
ABC==—d,
1234=qe.

16. I assume also

B4+C—A=q,
C+A—-B=4,

4./& + B — C —_ 7.
And we have thus

(p—o.)(e—0,)=(p+a)¢—B)+4ae, and ... also
(0—0.)(p—0s)=(p+B)(@—1v)+4ae,
(=@ )(o—ps)=(0+7)(9—0 )+4ae,

so that the equation in ¢ is

[(p+B)e—v)+4ac](p+y)(p—a)+dac][(p+u)(9—B)+4ae]=0.
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17. To obtain the symmetrical functions of «, (3, , it is only necessary to remark, that
if in the identical equation
(1,b, ¢, dYd, 1P=(0—A)(¢—B)(¢-C),
we put (x+A-+B4-C), =4(x—b), in the place of 4, the equation becomes
(L, b, ¢, dY6—b, 2)'=(x¢+e)(%+B)x+7)

so that we have

S0 =—b = ¢

Sof=—Dbi4-4dc = —16ae +4bd —c, ,

ey = b*—4bc+8d= 16ace—8ad’— 8¢+ 4bed— .

18, The developed expression for the equation in ¢ is easily found to be

¢’ A
4@t =2+ 120
40 2e?B—4ao(Ze’+SaB)+48a% S =0,

+0 .—dae(e—B)B—y)y—«)
+ =By +dacafyde—16a’¢ 2031640 |
19. In this equation the coefficient of ¢ is
—~4 ae.8§(B—A)C—B)(A-C)
= 382a¢ (A-B)B-C)(C—A);

or, neglecting the multiplier @, it is

—132.1.2.3.4(1—-2)1—38)(1—4)(2—3)(2—4)(3—4),
~which is the value for 6=0, of

— 32(1—2)(1=3)(1—4)(L—5)2—8)(2—4)2—B5)(3—4)(3—5)(4—5),
1. e. the coefficient in question is
—382.260/B8/ @ f i+ &e. =—800/5:/ d'f " +&c.,
where aff t4-&ec. denotes the discriminant of the denumerate form
' (@, 0, ¢, d, e, fYv, 1)

20. The remaining coefficients are rational functions of @, b, ¢, d, e, which have to be
completed by the introduction of the terms in . We have

Coeff. ¢*
=— (Za) =—0
4+ 22083 , +2(—16ae+4bd—c*)
+-12qe +12ae.
Coeff. ¢*
== (2eB) = (—16ae+t4bd—c*)
— 2ef3y3a —2¢(16ace—8ad*— 8b*e+-4bed —¢*)
— 4ae(Za) —4ac’e .
+ 4ae(2ap) +4ae( —16ae+4bd— )

-+ 48a?%? +48a%*.
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Coeff. ¢°
=—  a'fB%? = —(16ace— 8ad’— 8b*¢+4bcd—c*)?
+ 4daeafBySa +4ace(16ace— 8ad®—8b%e+4bed—¢?)
—160%* 203 —16a%¢*(—16ae+4bd—c?)
-+ 640°¢, +64a°c".
21. Effecting the developments, these are
—32 ae +240 0% | +3820 o
+ 8 bd —112 abde @ — 64 a*bde®
— 3¢ — 8 ac’e —176 a*c’é®
+ 16 acd? +224 a’cd’e
+ 16 b%e — 64 &4t
+ 16 0% 4224 ab’ce®
— 16 bcd —128 ab’d’e
+ 3¢t —112 abc’de
+ 64 abed®
+ 28 ac'e
— 16 ac*d®
— 64 pie?
+ 64 dcde
— 16 b%e
— 16 *c*d?
+ 8 bc'd
— 1 ¢c°

the first of which is in fact complete; the others being completed, the equation in ¢ is
found to be
22. For the denumerate form (a, b, ¢, d, e, f v, 1)’=0, the equation in ¢ is

fatx at X a@®x —8004/5a%/ 0 X
| A A A N A N A
T 0 (=324 o | —100 car | +1 Y 4000 def?
+ 8 &d +-240 o’e? —1600 a’def
— 3¢ +240 abef + 320 d’®
—112 «abde . —1600 @%%f*
| — 8 ac’e 640 a’beef
E + 16 acd? 640 a*bd’f
— 64 bf 64 Pbde?
4+ 16 b%e 80 a’c*df
4+ 16 PP 176 a’c%*
— 16 bc’d 224 ded’e
+ 3¢ 64 o’d!

384 ab’ef 1)Y=
192 abcdf Xe,1)=0,
224 ab’eé®
128 ab’d?
abc’f
112 abc’de
64 abed?
28 ac'e
16 ac’d?
64 bie?
64 bcde
16 b%c’e
16 %c*d?
8 be'd
1 ¢

P+t I+l ++ 1+ T+ L+
%

where OO0, = ‘ff“—l- &c., denotes the discriminant for the denumerate form.
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I proceed now to form the expression for ¢,¢,+¢,¢;+¢,Ps.
23. Writing for convenience # in the place of the root 5, we have

¢, =A—B4{23—=14+2(1+4—2-3)}
¢, =A—B—{23—14+4a(1+4+4—2-3)},
6,0, =(A—B)*— {23 —14+a(1+4+4—2-3)}".
The terms without & are, as before, (A—B)*—C*+4.1234, or —a-+4.1234, and we have
6,0,=—ef+4.1234
+22(144—2—3)(14—23)
—*(14-4—2-3);

0.0,=—PBy—+4.1234
+20(1+4+2—3—4)(12—34)
—2*(14+2—8—4),

or

and in like manner

and

OuPe=—rya-+4.1234
+22(14+8—4—2)(13—42)
—2*(143—4-2).

24. The roots 1, 2, 8, 4, contained in these expressions explicitly, and in «, B, v, are
. 1 . .
the roots of the equation ~— (@, b, ¢, d, e, fYv, 1)’=0, or, what is the same thing,

(@, 0, c, d, v, 1)'=0,
where
o=a,

b'=azx +b,
¢'=ar’+bx o,
d =az*+ 02>+ cx +d,
e'=axt+ba°+ca*+dx+e.
Omitting, as before, a power of ¢, which is ultimately restored, we have
6,0, 02054 ¢:05= — 2B+ 124
+203(144—2-3)(14—23)
—a*2(144—-2-3),
where the 3’s in the second and third lines denote each of them the sum of the three

terms obtained by the cyclical permutations of 2, 3, 4.

The first line is
(16dd — 4V d' +c*)+12a'¢

=28d/¢ —4d 41"
The second line is 24 into 3122—32123,
=(=bcd+3dd)+3dd ;
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or it is
=2x(6a'd' —10¢) ;
and the third line is —a? into 3312—2312,
- =3(6”—2d/c')—2a'¢ ;
or 1t 1s
=2*(8a'c — 30").
Hence, combining the three terms,
0.0, + 0,05+ ¢,0,=28d¢ —4b'd + 1"
+a2(12a'd' —28'¢')
+2*(8a'd —30"),
or substituting for (¢, ¥/, ¢, &, ¢) their values, the right-hand side is
=(40a?, 32ab, 28ac—80%, 44ad—8bc, 28ae—4bd+1¢ x, 1)1,

where & stands for #,, and on the left-hand side the factor ¢* is to be restored.
25. Writing for shortness

(*Yw, 1)'=(40¢’, 32ab, 28ac—80*, 44ad—8be, 28ae— 4bd+1c*Ya, 1),

the equation is .
@(@,0,+ GPs+ G:06) = (x5, 1)*;

and the system of equations to which this belongs is
@906+ 0,0, +9s0:) = (¥, 1),
(0,9, 0,8, 0:P6)=(*T 2, 1)",
@005+ @205 +0.00) = (W 1),
@015+ 0:95+0,0:) = (*X i, 1)",
@(0.0,+ @0+ 0uPs) = (¥ T, 1)*;

so that the roots @), &, @, &, @, will be rational functions of the combinations
6, @5+ 0.0, + P05, &c. respectively, of the equation in @.

MDCCCLXI 2p
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26. Passing now to the standard form (a, b, ¢, d, e, f Yv, 1)’=0, the equation in ¢ is

% —100 a'x 2000 a*x | =800 «*/5,/ T x | 40000
— AN Ny A N
+ 1 0 +1 ae 0 — 2 Jdf +1 + 1 d¥¢f?
—4 bd + 3 & — 2 ddef
+3 ¢ + 6 abef + 1 &
—14 abde — 1 &7
— 2 uac’e — 4 d’beef
+ 8 acd? + 8 &*bdf
— 4 BF — 2 dbdeé?
+10 O¥ce — 2 dcdf
+20 Pd* — 11 &ce?
—40 bed + 28 a’cd’e
+15 ¢t — 16 ao%d*
+ 6 ab’e
( — 12 ab“’c{?f e, 1)0=0,
+ 35 ab’ce’
— 40 ab’d’e
+ 6 abdf
— 70 abc’de
+ 80 abed?®
+ 35 ac'e
— 40 ac’d*
— 25 bt
+ 100 bicde
— 50 &cPe
—100 &%d?
! +100 bcid
| — 25 ¢°

where O, = a'f*+ &c., denotes the Discriminant for the Standard form.
27. And if we put ‘
(*X&, 1)*=20(2a?, 8ad, 22ac—100%, 18ad—10bc, Tae—10bd+5¢ 2, 1),
then we have
@006+ 0.0, 4 0,0:) = (¥, 1)%,
@ (0:0:+ @u0i+0:06) = (¥ 2, 1),
@*(0.054 005 +0.05) = (Y, 1),
@ (005t PuPo+ 0:05) = (¥, 1)1,
a2(¢1¢4+¢2¢5+¢’3@6)=(*Eia;'sa 1)4,
which lead to rational expressions for the roots @, x,, &, 2., @; in terms of the combina-
tions @, P+ .0, + @95, &c. respectively.
28. Consider now the quintic function
U=(a, b, ¢, d, ¢, X, y)=0a(v—ay)(x—By)x—yy)(@—"y)(r—2y);
and treating the numbers 1, 2, 3, 4, 5 as corresponding to «, 3, ¥, 9, ¢ respectively, write
B
$0=12345—-24135,
where b e m e e e
12345=12428+ 34445461, &ec.,
in which ﬁ, &ec. denote respectively

11 1
Y r—ay x—By
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Then we have “
P=ylor—xyl;
where
0=192345—24135,
123456=12+4-23+4 34445451 =03+ Ly -+ 5 -+d+22,
24135=244-41413435-+52 =30+ b~y -+ e +¢3,
and where x=(12345)—(24135),
and (12345)=123 42344 3454+4514-512 =Py -+ Lyd+ yde+dect 23,
(24135)=2414-4134-135-4 3524524 =300+ dewyy 4 arrye - yef3 ¢[30.
29. In fact,

and

=%{(12é45)_(24135)},
where JUSNEIED SSRGS G S U GG Gy
(12845) =123 + 234+ 345 4- 151 4-519,
—— P I N N o T
(24185)=241 + 413 +133 4352 +-524,

——
where 123, &c. denote respectively
1
p—ay)@—=Ppy)a—ry), &e.,

A ——t
and (12345)—(24135) thus presents itself as a cubic function divided by g°>. But in this
cubic function the coefficients of 2°, 2% vanish. For the coefficient of any power of &

will be
1284-234+4345644514512—241—413—135—-352—524,

where, first, for 2°, 123, &c. denote respectively unity; the coefficient of a° therefore
vanishes. Next, for a%, 123, &c. denote respectively —(14243), &c. (=a+B+7),
and the coefficient of &% also vanishes. But for ay’, 123, &c. denote re@pectwel)
124-23431(=aB+Ly+y), &c. respectively; the positive terms are

(12423 +31)4(234-344+42)4 (34 +45+453) 4+ (45+514+14) 4+ (51412 425),
which are
==2(124234+344+454-51) (24441 +4+134-35452)
=2,123454-24163;
and the negative terms, taken positively, are
(244+41+412)4 (414134 34)4- (13435451 4-(354-52+23) 4 (52 + 24+ 45),
which are
=(124+23+34445+51)4+2(24+414+13435452)
=1234642.24135;
so that the difference, or coefficient of 277 is

=12345—24135,
which is =g.
And for g°, 123, &c. denote respectively —123(=—ef3y), &c., so that the coefficient

of o is =x.
2pr2
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30. The cubic function is therefore =@ay*—yxy*; and dividing by 72, we have

a .
=g (®r—w)-

® is thus a fractional covariantive function, the leading coefficient whereof is ¢, and the

equation for the determination of @ is consequently that deduced from the equation for

o, by replacing therein the seminvariants by the corresponding covariants. The equa-

tion is

~ U6, N
0, '

—100U* Tab. No. 14,

< 0, (P, 1)°=0,

42000 U*[6(Tab. No. 14)*—4 Tab. No. 20],

—800 U2/ 54/ disct.=Tab. No. 26,

(A4, 3%,C, B¢ F &Y y), v J

where the Tables referred to are those of my Second Memoir on Quantics; the coeffi-
cients are in regard to (z, 7) of the orders 30, —, 22, —, 14, 10, 6 respectively. The
last coefficient, being of the degree 6 in the coeflicients (a, 4, ¢, d, ¢, f), is not given
in the Tables; it is therefore merely indicated by (4, 3, €, B, &, F, G x, y)’, the
leading coefficient @ being of course the last coefficient in the equation for ¢, to the
standard form.

I refrain from at present entering into the consideration of the values of the expres-

sions @@, 4,0, 0,P,, &c.




